Distributions which can be used to specify prior or likelihood components in model calibration.
Uniform Distribution (Improper), only appropriate for prior components -
mp_uniform
Normal Distribution -
mp_normal
Log-Normal Distribution -
mp_log_normal
Logit-Normal Distribution -
mp_logit_normal
Poisson Distribution -
mp_poisson
Negative Binomial Distribution -
mp_neg_bin
Usage
mp_uniform(trans_distr_param = list())
mp_normal(
location = mp_distr_param_null("location"),
sd,
trans_distr_param = list(location = mp_identity, sd = mp_log)
)
mp_log_normal(
location = mp_distr_param_null("location"),
sd,
trans_distr_param = list(location = mp_identity, sd = mp_identity)
)
mp_logit_normal(
location = mp_distr_param_null("location"),
sd,
trans_distr_param = list(location = mp_identity, sd = mp_identity)
)
mp_poisson(
location = mp_distr_param_null("location"),
trans_distr_param = list(location = mp_identity)
)
mp_neg_bin(
location = mp_distr_param_null("location"),
disp,
trans_distr_param = list(location = mp_identity, disp = mp_log)
)
Arguments
- trans_distr_param
Named list of transformations for each distributional parameter. See
transform_distr_param
for a list of available transformations.- location
Location parameter. Specifying the
location
parameter is only necessary when the distribution is used as a prior distribution. If it is used as a likelihood component the location parameter will be taken as the simulated variable being fitted to data, and so thislocation
parameter should be left to the default.- sd
Standard deviation parameter.
- disp
Dispersion parameter.
Details
All distributional parameter arguments can be specified either as
a numeric value, a character string giving the parameter name, or a
distributional parameter object (See fit_distr_params
).